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AN APPROXIMATION FOR THE DISTRIBUTION OF
THE NUMBER OF RETRYING CUSTOMERS IN AN

M/G/1 RETRIAL QUEUE

Jeongsim Kim* and Jerim Kim**

Abstract. Queueing systems with retrials are widely used to model
many problems in call centers, telecommunication networks, and in
daily life. We present a very accurate but simple approximate for-
mula for the distribution of the number of retrying customers in
the M/G/1 retrial queue.

1. Introduction

Retrial queues are queueing systems in which arriving customers
who find all servers occupied may retry for service again after a ran-
dom amount of time. Retrial queues have been widely used to model
many problems in telephone systems, call centers, telecommunication
networks, computer networks and computer systems, and in daily life.
Detailed overviews for retrial queues can be found in the bibliographies
[1, 2, 3], the surveys [6, 9, 10], and the books [4, 7].

Retrial queues are characterized by the following feature: If the server
is idle when a customer arrives from outside the system, this customer
begins to be served immediately and leaves the system after the service
is completed. On the other hand, any customer who finds the server
busy upon arrival joins a retrial group, called an orbit, and then at-
tempts to obtain service after a random amount of time. If the server
is idle when a customer from the orbit attempts to obtain service, this
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customer receives service immediately and leaves the system after the
service completion. Otherwise the customer comes back to the orbit
immediately and repeats the retrial process.

We consider the M/G/1 retrial queue where customers arrive from
outside the system according to a Poisson process with rate λ and ser-
vice times are independent and identically distributed. Let B denote
a generic random variable representing the service time and β(·) be
the Laplace-Stieltjes transform of B, i.e., β(s) = E[e−sB]. The retrial
time, i.e., the length of the time interval between two consecutive at-
tempts made by a customer in the orbit, is exponentially distributed
with mean ν−1. The arrival process, the service times, and the retrial
times are assumed to be mutually independent. The traffic load ρ is
defined as ρ = λEB. We assume that ρ < 1 for stability of the system
and that the service time distribution has a finite exponential moment,
i.e., γ ≡ sup{t ∈ R : EetB < ∞} > 0.

At steady state, let N be the number of customers in the orbit (i.e.,
the number of retrying customers) and C be 0 if the server is idle and
1 otherwise. Let qn = P(N = n,C = 0) and pn = P(N = n,C = 1),
n = 0, 1, 2, . . .. Kim et al. [8] showed that if there exists a real number
σ satisfying

β(λ− λσ) = σ, 1 < σ < 1 +
γ

λ
,

then

qn ∼ cna−1σ−n as n →∞,(1.1)

pn ∼ cν

λσ
naσ−n as n →∞,(1.2)

where

a =
λ

ν

σ − 1
−λβ′(λ− λσ)− 1

,

c =
1− ρ

Γ(a)

(σ − 1
σ

)a
exp

(∫ σ

1

λ

ν

1− β(λ− λz)
β(λ− λz)− z

+
a

z − σ
dz

)

with Γ(·) denoting the gamma function. Here and subsequently, fn ∼ gn

as n →∞ denotes limn→∞ fn

gn
= 1.

Unfortunately, the constant c is difficult to calculate in practice, with
the exclusion of the case when the service time distribution is expo-
nential. Therefore, we present a very accurate but simple approximate
formula for the computation of the distributions qn and pn. The approx-
imation is based on the tail asymptotics (1.1) and (1.2).
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2. Approximation for the distribution of the number of retry-
ing customers

Note that for every positive constant b, we have n ∼ n+ b as n →∞.
Therefore, (1.1) and (1.2) imply that

qn ∼ c(n + b)a−1σ−n as n →∞,

pn ∼ cν

λσ
(n + b)aσ−n as n →∞,

for b > 0. Since the constant c is difficult to calculate in practice, we will
use approximations q̃n and p̃n for qn and pn, n = 0, 1, 2, . . ., as shown
below: For positive real numbers b̃ and c̃,

q̃n = c̃(n + b̃)a−1σ−n,(2.1)

p̃n =
c̃ν

λσ
(n + b̃)aσ−n.(2.2)

To use this approximation, we have to determine b̃ and c̃. The q̃n and
p̃n satisfy the following two equations:

∞∑

n=0

(q̃n + p̃n) = 1,(2.3)

∞∑

n=0

p̃n = ρ,(2.4)

where (2.3) follows from the condition that the total probability is 1 and
(2.4) follows from the fact that

∑∞
n=0 p̃n is equal to the probability of

the server being busy.
We introduce the Lerch transcendent given by (see Section 1.11 of

[5])

Φ(z, s, α) =
∞∑

n=0

zn

(n + α)s
, |z| < 1, α 6= 0,−1,−2, . . . .

Substituting (2.1) and (2.2) into (2.3) and (2.4) yields

c̃Φ(σ−1, 1− a, b̃) +
c̃ν

λσ
Φ(σ−1,−a, b̃) = 1,

c̃ν

λσ
Φ(σ−1,−a, b̃) = ρ.

From this we have

λσρΦ(σ−1, 1− a, b̃)− (1− ρ)νΦ(σ−1,−a, b̃) = 0,(2.5)
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Example 1 Example 2
σ 1.697224362268005 1.338562172233852
a 1.470725343394151e-01 5.944911182523071e-02
b̃ 1.218698140527216e-01 6.242138657358584e-02
c̃ 4.839504546889740e-02 2.229981192806169e-02

Table 1. The values of σ, a, b̃ and c̃.

and

c̃ =
1− ρ

Φ(σ−1, 1− a, b̃)
.(2.6)

Therefore, the value b̃ is calculated by numerically solving equation (2.5)
and the value c̃ is given by (2.6).

In summary, the approximations q̃n and p̃n for qn and pn, n =
0, 1, 2, . . . are calculated as follows:

q̃n = c̃(n + b̃)a−1σ−n,

p̃n =
c̃ν

λσ
(n + b̃)aσ−n,

where σ is a solution of β(λ − λσ) = σ, a = λ
ν

σ−1
−λβ′(λ−λσ)−1 , b̃ is

calculated by numerically solving equation λσρΦ(σ−1, 1 − a, b̃) − (1 −
ρ)νΦ(σ−1,−a, b̃) = 0 and c̃ is given by c̃ = 1−ρ

Φ(σ−1,1−a,b̃)
.

3. Numerical examples

Numerical examples are presented to illustrate the accuracy of the
approximate formulas (2.1) and (2.2). In the following two examples,
we assume that the arrival rate is λ = 1 and the mean service time is
EB = 3

2 and so the traffic load is ρ = 2
3 . The retrial rate is ν = 10.

Example 3.1. (The M/E2/1 retrial queue). We consider the M/E2/1
retrial queue where the service time distribution is Erlang of order 2 with
density function f(x) = 9xe−3x.

Example 3.2. (The M/H2/1 retrial queue). We consider the M/H2/1
retrial queue where the service time distribution is hyperexponential of

order 2 with density function f(x) = 1
4(3

4e−
3
4
x) + 3

4(9
4e−

9
4
x).
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Figure 1. Exact and approximate values of qn and pn

for Example 3.1.
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Figure 2. Exact and approximate values of qn and pn

for Example 3.2.

In Figure 1 (Figure 2, resp.), we plot the exact and approximate val-
ues of qn and pn for Example 3.1 (Example 3.2, resp.). The approximate
values are obtained by using the formulas (2.1) and (2.2), along with the
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n q∗n q̃n rel. error p∗n p̃n rel. error
0 2.953e-01 2.914e-01 -1.341e-02 2.297e-01 2.092e-01 -8.917e-02
9 5.942e-05 6.284e-05 5.766e-02 3.203e-03 3.378e-03 5.443e-02
18 2.829e-07 2.995e-07 5.852e-02 3.025e-05 3.197e-05 5.698e-02
27 1.716e-09 1.817e-09 5.888e-02 2.745e-07 2.903e-07 5.787e-02
36 1.150e-11 1.218e-11 5.907e-02 2.449e-09 2.592e-09 5.832e-02
45 8.137e-14 8.619e-14 5.919e-02 2.165e-11 2.291e-11 5.859e-02
54 5.963e-16 6.316e-16 5.927e-02 1.902e-13 2.014e-13 5.877e-02
63 4.475e-18 4.740e-18 5.933e-02 1.665e-15 1.763e-15 5.891e-02
72 3.418e-20 3.621e-20 5.938e-02 1.453e-17 1.539e-17 5.900e-02
81 2.646e-22 2.803e-22 5.941e-02 1.265e-19 1.340e-19 5.908e-02
90 2.070e-24 2.193e-24 5.944e-02 1.099e-21 1.164e-21 5.914e-02
99 1.633e-26 1.730e-26 5.946e-02 9.539e-24 1.010e-23 5.919e-02

Table 2. The values of relative error for Example 3.1.
The q∗n and q̃n (p∗n and p̃n, resp.) denote the exact and
approximate values of qn (pn, resp.).

n q∗n q̃n rel. error p∗n p̃n rel. error
0 3.014e-01 3.029e-01 5.222e-03 1.798e-01 1.413e-01 -2.141e-01
9 1.753e-04 2.033e-04 1.602e-01 1.185e-02 1.377e-02 1.623e-01
18 6.599e-06 7.705e-06 1.676e-01 8.901e-04 1.040e-03 1.660e-01
27 3.265e-07 3.819e-07 1.693e-01 6.601e-05 7.719e-05 1.695e-01
36 1.806e-08 2.113e-08 1.701e-01 4.864e-06 5.692e-06 1.702e-01
45 1.061e-09 1.242e-09 1.706e-01 3.571e-07 4.181e-07 1.707e-01
54 6.478e-11 7.585e-11 1.709e-01 2.616e-08 3.063e-08 1.710e-01
63 4.062e-12 4.757e-12 1.711e-01 1.913e-09 2.241e-09 1.712e-01
72 2.597e-13 3.041e-13 1.713e-01 1.398e-10 1.637e-10 1.713e-01
81 1.685e-14 1.974e-14 1.714e-01 1.020e-11 1.195e-11 1.714e-01
90 1.106e-15 1.296e-15 1.715e-01 7.441e-13 8.717e-13 1.715e-01
99 7.329e-17 8.587e-17 1.716e-01 5.424e-14 6.355e-14 1.716e-01

Table 3. The values of relative error for Example 3.2.

values of σ, a, b̃ and c̃ given in Table 1. The exact values are obtained as
follows: It is known that limK→∞ q

(k)
n = qn (limK→∞ p

(k)
n = pn, resp.),

where q
(K)
n (p(K)

n , resp.) is the probability that there are n customers in
the orbit and the server is idle (busy, resp.) at steady state in the corre-
sponding retrial queue with finite orbit capacity K. The probability qn
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(pn, resp.) is obtained as q
(K)
n (p(K)

n , resp.) such that q
(K)
n (p(K)

n , resp.)
does not vary numerically as K increases. Figures 1 and 2 show that
the approximations (2.1) and (2.2) are very accurate.

To illustrate the accuracy of our approximation method, we consider
the values of relative error. The relative error is defined by vapprox−v

v ,
where v is the exact value and vapprox is its approximation. The values
of relative error for Examples 3.1 and 3.2 are shown in Tables 2 and 3.
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